Downscaling with the WRAPP methodology: clustering of meteorological situations and microscale CFD modeling

C. Le Guennic, E. Joos

EDF

15/09/2020

SUMMARY

- 1. Introduction: the WRAPP methodology
- 2. Improving the clustering step
- 3. Micro-scale simulations
- 4. Perspectives within the HPCWE project

1. INTRODUCTION: THE WRAPP METHODOLOGY 1/2

- Need for accuracy in wind energy production assessment
 - Impact on financing conditions
 - Important industrial stake
- Increase in turbine and farm size results in increased wake losses
 - One of the largest source of uncertainties in AEP evaluation, espacially for offshore wind farms
 - Standard tool: engineering and simplified CFD models
 ⇒ often little to no account for interactions with ABL and thermal stability
- EDF has developed the WRAPP methodology to chain mesoscale modelling with CFD micro-scale simulations

1. INTRODUCTION: THE WRAPP METHODOLOGY 2/2

2. IMPROVING THE CLUSTERING STEP 1/3

- Originally, the methodology was developed around a k-means clustering, but, for comparison purposes, a preliminary study has been performed with a SOM approach (Self-Organizing Map)
 - Encouraging results with SOM
 - Performance benchmark
 - Sensitivity analysis on clustering parameters.
- What are we comparing?
 - K-means: based on a pre-defined number of classes k, whose centres (=means) are randomly initialized; cycles between an
 - Assignment step: assign each observation to the cluster with the nearest mean
 - **Update step**: recalculate the means for observations in each cluster.
 - SOM: based on a neural network of pre-defined size, topology and dimension, linked to the input data; cycles between
 - Choosing a winner (best matching unit): for each iteration t, an observation X(t) is picked at random, and the closest neuron wins;
 - Updating the map: the winner's statistical weight is updated, as well as its neighbours'. This is modulated through an activation function; various such functions can be used.

2. IMPROVING THE CLUSTERING STEP 2/3

- Extensive dataset based on nudged WRF computations:
 - 20138 observations, corresponding to 2.5 years met mast measurements on a French offshore site;
 - Truncated variable number (65) for efficiency reasons:
 - Five interest points are considered;
 - Data observed at 4 different heights for each point;
 - Extraction of meaningful data (velocity, wind direction, Richardson numbers...)
- Comparison of several implementations of SOM and a k-means implementation:
 - The SOM implementations are based on a 14x14 2D neural network, and differ by the choice of initialization and neighbouring range;
 - 200 clusters for k-means.
- Comparison to pre-clustering data.
 - Check for distorsions of initial values;
 - Analysis of velocity, wind rose and energy production.
 - Satisfying performance on average velocity and energy production;

Wind rose: pre-clustering data, best-performing SOM and k-means

2. IMPROVING THE CLUSTERING STEP 3/3

- Comparison to pre-clustering data, cont'd.
 - Significant compensation effects due in part to "erasure" of extreme data points;
 ⇒ unknown impact on micro-scale computations
 - SOM can obtain better results than k-means but requires fine-tuning the hyper-parameters;
 - Increasing the number of clusters reduces the distorsion.
 ⇒ what is the optimal number of clusters? Potential interest of Bayesian coresets or Data Squashing approaches to reduce the number of clusters?

Velocity distribution at hub height: preclustering (red), 50%/preitfo7/84ng/\$0%/s (yellow) and k-means (blue).

3. MICROSCALE SIMULATIONS: VALIDATION 1/2

WE

- CFD computations performed with Code_Saturne
 - Open source CFD code developed by EDF;
 - Includes an atmospheric module;
 - The WT are modelled through the actuator disk approach.
- The WRAPP approach has been tested against field data:
 - Stand-alone Code_Saturne: validation against experimental data
 - From the Nysted farm: calculated efficiency within 8% of actual data.
 - From the Horns Rev farm : calculated efficiency within 8 % of actual data.

Nysted farm: comparison of the measured and computed values of normalized power along the turbine row for a direction of 278° and 275.5° respectively.

3. MICROSCALE SIMULATIONS: VALIDATION 2/2

- The entire WRAPP chain has been tested on the Thortonbank wind farm:
 - Offshore farm in the Belgium North Sea
 - SCADA data available.
- Methodology:
 - Outsourced WRF simulation;
 - Filtering of the SCADA data;
 - SOM clustering
 - Interpolation of WRF wind profiles to define CFD BC
 - · CFD simulations.
- Initial result:
 - ⇒ Wake losses overestimated by about 2 %
- Large part of the difference can be traced back to:
 - The difference between WRF results and real meteorological conditions: correcting with experimental data yields a wake overestimation of less than 1 %;
 - The stand-by WT effect: some selected data points have up to 8 WT on stand-by, i.e. not producing any wake;
 - The relatively small number of clusters.

Effect of flow direction on farm efficiency

3. MICROSCALE SIMULATIONS IN HPCWE: PERDIGAO

HPC WE

an idealized

- Well-instrumented Portuguese site
 - Complex orography;
 - NEWA field measurement campaign.
- WRF data to be provided by Vortex;
 - Definition of input vectors for the clustering step?
 - Optimal number of classes?
- Benchmark with DTU's Ellipsys and comparison to experimental data;
- Preliminary computations finished.

4. PERSPECTIVES

Within the HPCWE project:

- Perdigão computations;
- Brazilian case:
 - Offshore site;
 - 20 years of WRF computations
 ⇒ optimal for a more in-depth study of the clustering step.

• In general:

- The methodology has already been used in an industrial context for EDF Renewables;
- Further validation required
 ⇒ need for high-quality exploitation data over a significant period of time;
- Impact of blockage effect;
- Increasing the number of clusters means higher HPC needs to perform the micro-scale simulations.

THANK YOU FOR YOUR ATTENTION!

